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Wave interaction with a vertical cylinder:
spanwise flow patterns and loading
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A vertical cylinder is located in a free-surface wave, and a two-camera version
of high-image-density particle image velocimetry is employed to characterize the
spanwise modes of the flow structure in terms of instantaneous velocity and vorticity.
These modes are classified according to organized patterns of velocity in the near
wake, and are further interpreted in terms of distinctive arrangements of streamwise
vorticity concentrations.

At low Keulegan–Carpenter number, which corresponds to small wave height,
locally two-dimensional vortices having small scale and circulation tend to form as
a symmetrical pair and remain attached, or in close proximity, to the surface of the
cylinder. Along the span of the cylinder, the near wake shows either a sinuous S or
a unidirectional U mode. The spanwise wavelength λ of the S modes, relative to the
cylinder diameter D, lies in the range 1 . λ/D . 4.5. These values of λ/D represent
the spacing between extrema of patterns of crossflow velocity, as well as between
clusters of streamwise vorticity of like sign. As the free surface is approached, the
value of λ/D scales with the ratio of the minor to major axes of the elliptical particle
trajectory of the wave.

At moderate values of the Keulegan–Carpenter number, locally two-dimensional
vortices having large scale and circulation are shed from the cylinder in an asymmetric
arrangement. The corresponding spanwise mode represents the phase variation of this
shedding along the span of the cylinder. These sinuous S modes involve large-scale
distortions of patterns of both crossflow velocity and streamwise vorticity, which
have wavelengths in the range 10 . λ/D . 110, in contrast to the spacing between
individual concentrations of vorticity, which is 1.5D to 4D. Remarkably, it is possible
to attain a unidirectional U mode, whereby the phase of the locally two-dimensional
vortex shedding is preserved along the entire extent of the cylinder.

Signatures of the moments due to the transverse and in-line forces on the cylinder
were acquired simultaneously with the patterns of instantaneous velocity and vorticity.
Severe modulations of the moment due to the transverse force are associated with
spontaneous transformations between basic forms of the sinuous S and unidirectional
U modes. The overall form of the signature of the moment due to the in-line force is,
however, not generally affected by the spontaneous transformation between modes,
but distortion of its peaks is evident.

† On leave from Beijing Institute of Aerodynamics (BIA).
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1. Introduction
Loading of cylindrical structures in ocean and coastal engineering applications is

of continuing importance. Risers, cables and related configurations are subjected to
wave motion and may undergo undesirable vibration. Over the years, substantial
efforts on experimental, numerical and theoretical fronts have addressed the central
issues of this class of problems.

Simulation of loading due to long waves can be accomplished by subjecting
a stationary cylinder to unidirectional oscillatory flow or, conversely, oscillating a
cylinder in quiescent fluid. The classes of quasi-two-dimensional modes of vortex
formation from the cylinder, as well as the magnitudes of the in-line and transverse
forces, are a function of the Keulegan–Carpenter number KC = 2πA0/D, in which
A0 is the displacement amplitude of the oscillatory flow or cylinder motion and D is
the diameter, as well as the Stokes number β = fD2/ν, in which f is the frequency
of the motion and ν is the kinematic viscosity. The investigations of Singh (1979),
Bearman et al. (1981), Sarpkaya & Isaacson (1981), Ikeda & Yamamoto (1981),
Iwagaki, Asano & Nagai (1983), Williamson (1985), Obasaju, Bearman & Graham
(1988), Dütsch et al. (1998a) and Lin & Rockwell (1999) characterized, in either
a qualitative or quantitative fashion, the modes of quasi-two-dimensional vortex
formation in relation to the loading on the cylinder.

For the case of a vertical cylinder in a wave, the axis of the orbital particle trajectory
of the incident wave is orthogonal to the axis of the cylinder and one expects the
loading to show distinctive features relative to the case of a horizontal cylinder
beneath a wave. The loading on vertical cylinders has been addressed by Ramberg
& Niedzwecki (1979), Chakrabarti (1980), Stansby, Bullock & Short (1983), Bearman
et al. (1985) and Tørum (1989). In addition, Sarpkaya (1984) simulated a vertical
cylinder in a wave by imparting vertical motion to a cylinder in a unidirectional
oscillatory flow. A field experiment was described by Dean, Dalrymple & Hudspeth
(1981). Sumer & Fredsøe (1997) gave an assessment of the loading of vertical cylinders
in waves in comparison with loading in a unidirectional oscillatory flow.

For the foregoing categories of oscillating flow–cylinder and wave–cylinder inter-
action, one expects the existence of three-dimensionality, at least to a degree, along
the span of the cylinder. In fact, the spanwise correlation coefficients of fluctuat-
ing pressure of Obasaju et al. (1988) and Kozakiewicz, Sumer & Fredsøe (1992)
clearly indicate that the loading on a cylinder immersed in a unidirectional oscil-
latory flow is three-dimensional. The decay of the correlation coefficient along the
span of the cylinder is a strong function of the Keulegan–Carpenter number KC .
Furthermore, Obasaju et al. (1988) visualized the vortex modes in two different planes
orthogonal to the axis of the cylinder. The difference between these modes indicated
three-dimensionality along the span.

Honji (1981) discovered highly organized, three-dimensional modes having a span-
wise wavelength λ, relative to the cylinder diameter D, of the order of λ/D = 0.5
to 1.0, for the case of an oscillating cylinder in quiescent water. Sarpkaya (1986)
provided further insight into the Honji instability, including its inception and the
onset of separation and turbulence on an oscillating cylinder. Tatsuno & Bearman
(1990) classified the modes of three-dimensionality along the span of the cylinder as
a function of the Keulegan–Carpenter number KC and the Stokes number β. De-
pending upon the particular regime observed, the spanwise wavelengths ranged from
λ/D ≈ 0.8 to 6.0. Dütsch, Durst & Brenner (1998b) and Dütsch (2000) performed
a numerical simulation of the three-dimensional modes induced by an oscillating
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circular cylinder at low KC and Reynolds number Re. The flow structure illustrated
in their visualization exhibits a spanwise periodicity of the order of λ/D ≈ 2.5. Most
recently, Elston, Blackburn & Sheridan (2000) employed a Floquet analysis in con-
junction with a direct numerical simulation to calculate the three-dimensional modes.
Depending upon the value of KC and β, highly ordered spanwise patterns of vorticity
having a spanwise wavelength λ/D = 1.4 to 3.9 were observed.

The focus of the present investigation is on the three-dimensionality of the near
wake of a vertical cylinder piercing a free-surface wave, and its relation to the
loading of the cylinder. In contrast to the case of unidirectional oscillatory flow past
a stationary cylinder or, conversely, oscillation of the cylinder in quiescent fluid, the
interaction of a wave with a vertical cylinder is inherently more complex. The axis of
the elliptical particle trajectory of the wave motion is orthogonal to the axis of the
cylinder. Depending on the type of wave, the ratio of the minor to major axes of the
elliptical motion may be a function of depth. Furthermore, the end conditions involve
an oscillatory free-surface condition at the upper end and a solid boundary condition
at the bottom end. The admissible modes of three-dimensional vortex formation
along the span of the cylinder and their relation to the cylinder loading are unknown.
An intriguing possibility is attaining spanwise modes and loading that are highly
correlated, i.e. unidirectional, even in the presence of the spanwise variations of the
characteristics of the incident wave.

The aim of the present study is to address the foregoing issues using patterns
of instantaneous velocity and vorticity along the span of the cylinder. A technique
of high-image-density particle image velocimetry is employed, and the instantaneous
images are correlated with instantaneous values of the moments due to the transverse
and in-line forces, in order to determine the degree to which the three-dimensionality
influences the loading.

2. Experimental system and techniques
2.1. Wave tank-cylinder system

Experiments were performed in a custom-designed wave tank in order to allow three-
dimensional illumination and imaging of flow modes. Selected aspects of this facility,
as well as a representative image, are described by Rockwell et al. (2001). Figure 1(a)
shows an overview of the wave tank. It had a width of 426 mm, a depth of 1018 mm
and a length of 9300 mm. Water was maintained at a nominal depth of 700 mm.
Waves were generated by a paddle-type wave generator with active control via force
feedback (Edinburgh Designs, Ltd.). A 1270 mm long wedge (included angle of 19◦)
of absorbent porous material was located at the other end of the wave tank.

A cylinder of diameter D = 12.7 mm and length L = 876 mm was employed, and
the length of the submerged part of the cylinder was 700 mm. At the given wave
frequency f = 0.5 Hz, values of Keulegan–Carpenter number KC = 2πA0/D = 4.5 to
21.4 were generated by variation of the paddle amplitude. In this definition of KC ,
A0 is the horizontal displacement amplitude of the wave, i.e. half the major axis A
of the orbital particle trajectory of the wave, and D is the diameter of the cylinder.
Unless otherwise indicated, the reference value of A0 is always evaluated at the free
surface. Over this range of KC , the wave amplitude varied from 3.2 to 22.6 mm. The
value of the Stokes number was β = fD2/ν = 73 for all experiments.
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Figure 1. (a) Schematic of the experimental system illustrating the wave tank, laser sheets, and ori-
entations and arrangements of cameras employed for high-image-density particle image velocimetry,
laser-induced qualitative visualization and shadowgraph techniques. (b) Schematic showing illustra-
tions of laser sheet A, which is oriented in the wave direction, laser sheet B, which is orthogonal to
the wave, and sheet C, which is parallel to the still free surface. Also shown are definitions of the
velocity components.

2.2. Wave characterization

The aim of this investigation is to investigate wave–cylinder interaction for the case
where the ratio of the minor axis B to the major axis A of the orbital particle
trajectory of the wave exhibits large variations with depth. This goal is accomplished
by the generation of a wave with an elliptical particle trajectory at the free surface and
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a unidirectional trajectory at the bottom of the wave tank. The wave had a frequency
f = 0.5 Hz and the nominal water depth was d = 700 mm. The corresponding
wavelength of the free-surface wave was λ = 4620 mm, which corresponds to a
value of kd = 2πd/λ = 0.95. This means that the wave is intermediate between the
long-wave and deep-water limits.

During preliminary experiments, it was found that even a small ratio of the
reflected to incident wave energy could significantly distort the particle trajectories
of the wave motion. Placement of the vertical cylinder at the minimum amplitude of
the wave system provides two advantages. First, at this location, the major axes A
of the particle orbits at all values of depth are oriented in the horizontal direction;
away from this location, the major axes are inclined with respect to the horizontal
(Ippen 1966). Second, the variation with depth of the minor B and major A axes of the
orbital trajectories corresponds to that of the classical intermediate wave (Ippen 1966;
Lighthill 1978). In essence, the axes A and B are proportional to cosh k(d + z) and
sinh k(d + z) respectively. The orbital particle trajectories at each value of KC were
determined experimentally using the technique of high-image-density particle image
velocimetry (PIV). The Keulegan–Carpenter number of the wave system is defined as
KC = 2πA0/D, in which A0 = A/2 is the amplitude of the horizontal displacement of
the orbital trajectory of the wave at the free surface. This PIV technique, in conjunction
with the aforementioned analysis of Ippen (1966), also allowed determination of the
ratio of the reflected to incident wave energy, i.e. Er/Ei = 13.7%, 6.2% and 3.5% at
values of KC = 4.5, 10 and 18.

Figure 2 shows the characteristics of the wave at the location of the cylinder, but
in its absence. Figure 2(a) compares the theoretical orbital trajectories at selected
depths beneath the free surface, obtained from Ippen (1966), with those determined
experimentally using the PIV technique for a representative value of KC = 17.
Figure 2(b) shows the ratio of the minor B axis to the major A axis of the elliptical
trajectory at the free surface as a function of KC . Figure 2(c) exhibits the ratio B/A
normalized by the free surface value (B/A)0 as a function of both depth z beneath
the free surface and depth normalized by the cylinder diameter, z/D; this variation
is universal for all KC . It is evident that the flow is orbital at the free surface and
unidirectional at the bottom of the tank. Finally, figure 2(d ) shows the variation of
the major axis A of the orbital trajectory normalized by D as a function of depth for
three values of KC . Taken together, figures 2(c) and 2(d ) show that B/A undergoes
a large change from the free surface to the bottom of the wave tank, while KC
decreases by 33%.

2.3. Ranges of parameters: physical basis

In order to determine the most appropriate values of Keulegan–Carpenter number
KC = 2πA0/D and Stokes number β = fD2/ν, and thereby values of Reynolds
number Re = KCβ, the series of investigations described in the Introduction were
employed as a guide. More specifically, experimental flow visualization and numerical
simulation of the patterns of vortex formation for unidirectional oscillatory flow past
a stationary cylinder and oscillatory motion of a cylinder in quiescent fluid served as
a framework for selection of parameters of the actual wave–cylinder interaction of
interest in the present study.

Low Keulegan–Carpenter number. At and below the representative low value of
KC = 4.5 selected for the present study, small-scale vortices form during the initial
phase of unidirectional, oscillatory motion, and they remain attached, or in close
proximity, to the cylinder. In fact, the initially formed vortices resemble the sym-
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Figure 2. (a) Experimental and theoretical particle trajectories of the surface wave; (b) variation of
the ratio of the minor B axis to the major A axis of the ellipse as a function of Keulegan–Carpenter
number KC; (c) variation of B/A, normalized by free-surface value (B/A)0 with depth z; and (d )
amplitude A of the ellipse normalized by the cylinder diameter D as a function of depth (z ) beneath
the free surface.

metrical vortex pair from an abruptly accelerated cylinder. This type of pattern has
been observed at values of KC close to or at 4.5 for β = 20 (Dütsch et al. 1998a),
β = 45.2 (Tatsuno & Bearman 1990), and β = 730 (Williamson 1985). Regarding
the symmetry of the initially formed vortex pair, Williamson (1985) found that above
KC = 4, the attached, nominally symmetrical vortices may exhibit unequal strength.
Since the value of KC = 4.5 at the free surface decreases with depth, this pattern
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of near-wake vortex formation remains similar with depth, i.e. the formation of an
attached vortex pair of ever decreasing scale.

Intermediate Keulegan–Carpenter number. An intermediate value of KC = 10 cor-
responds to the occurrence of shed, as opposed to attached, vortices in the near
wake. During the initial phase of the oscillatory motion, Kármán-like shedding of
a large-scale vortex appears in the near wake. This basic pattern is evident at or
near KC = 10 for β = 20 (Dütsch et al. 1998a), β = 37.7 (Tatsuno & Bearman
1990), β = 416 (Obasaju et al. 1988), and β = 730 (Williamson 1985). For the present
case of the wave, the value of KC = 10 at the free surface decreases to KC = 6.7
at the floor of the wave tank. As indicated by Williamson (1985), the basic pattern
of quasi-two-dimensional, large-scale vortex formation has the same form over this
range of KC . Finally, the intermediate range of KC of the present investigation
also includes KC = 18 at the free surface, which decreases to KC = 12.1 at the
bottom of the wave tank. For unidirectional oscillatory motion, the initial phase of
shedding of the large-scale vortex in the near wake at KC = 18 is similar to that
at KC = 10 as indicated by regimes in Williamson (1985), the subsequent details of
additional vortex formation and interaction notwithstanding. It is this initial phase
that is of primary interest in the present investigation, which focuses on definition of
the spanwise modes in the near wake.

Stokes number. The value of β = fD2/ν for the present experiment was defined on
the basis of the anticipated three-dimensional structure along the span of the cylinder.
Tatsuno & Bearman (1990) provided a detailed regime map of three-dimensional states
on a plane of KC versus β for the case of an oscillating cylinder in quiescent fluid.
At a low value of β . 55, a multiplicity of complex, three-dimensional states can
occur as KC increases from 0 to 10. On the other hand, at a sufficiently high value
of, for example, β = 73, which was selected for the present study, a simpler set of
three sequential, three-dimensional states (designated as a states B, E, and G) occurs
as KC increases. The aforementioned values of KC of the present study extend over
these three states. All of the visualization photos of Tatsuno & Bearman (1990), as
well as values of measured wavelength λ/D of the spanwise three-dimensionality, are,
however, for values of β lower than 73. In their study, turbulent motion appeared
when β was sufficiently large, and although the flow was anticipated to have a
three-dimensional structure, it did not appear to be regular along the cylinder axis.
This difficulty in defining the three-dimensional flow structure is no doubt due to
the relatively high value of Re = KCβ and the associated challenges of interpreting
patterns of the visualization marker. The present investigation focuses on this higher
range of Re and aims to define the admissible modes of the three-dimensionality.

2.4. Visualization: shadowgraph and quantitative imaging techniques

The overview of figure 1(a) shows the illumination and image recording systems
in relation to an isometric schematic of the wave tank. Shadowgraph visualization
involved use of a translucent screen oriented horizontally and positioned at an
elevation of 80 mm above the nominal elevation of the free surface. The white light
illumination for the shadowgraph originated from a 35 mm projector system. As
indicated at the bottom of the schematic, this white light was reflected from a mirror
located beneath the tank. Images on the shadowgraph screen were recorded using a
film-based camera (1).

As shown in figure 1(a) and in further detail in figure 1(b), the characteristics
of the unsteady wave system and its interaction with the cylinder were visualized
using laser sheets A and B, which provided side and end views respectively of the
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instantaneous flow mode. These laser sheets were located a distance of 6 mm from
the surface of the cylinder. Two types of visualization were performed using laser
sheet B. The first involved illumination of the microbial growth suspended in water
that was untreated for two days. For this purpose, camera (2) was employed. The
visualized flow pattern was entirely qualitative. Quantitative representations of the
spanwise modes in laser sheet B were obtained via a technique of high-image-density
particle image velocimetry. Multiply-exposed images of metallic-coated 14 micron
diameter spheres in clean water were reflected from two small (64 mm × 114 mm)
mirrors located within the wave and at a distance of 1170 mm from laser sheet B. The
images were recorded using two film-based camera–bias mirror systems designated as
(3) and (4); these systems were synchronized using a microcomputer. Images obtained
in laser sheet A, corresponding to a side view, were recorded using camera (5) and its
associated bias mirror.

In order to generate laser sheets A and B, the beam from a 20 W continuous
argon-ion laser was reflected from a rotating mirror having 48 facets. This mirror
was located beneath the tank, as indicated in the schematic. The effective scanning
frequency generated by the rotating mirror depended upon the value of the Keulegan–
Carpenter number KC = 2πA0/D. For laser sheet B, at KC = 10, it was 55 Hz, and
at KC = 18, it was 106 Hz. For the smallest value of KC = 4.5, an oscillating mirror
was employed; it was driven by a galvanometer scanner at 20 Hz. For the side view
of laser sheet A, which was used to determine the orbital particle trajectories of the
wave, the rotating mirror was employed; at KC = 17, the scanning frequency was
135 Hz. The scanning beam illuminated hollow plastic spheres, which were metallic
coated. The spherical particles had a nominal diameter of 14 microns. These particles
were dispersed throughout the wave tank, and the water was allowed to attain a
quiescent state, prior to initiation of the wavemaker.

For the images acquired in the end view of laser sheet B, corresponding to cameras
(3) and (4) in figure 1(a), a magnification of 1 : 11 was employed. This provided a field
of view for each of the cameras of 264 mm× 396 mm in the plane of the laser sheet.
High-resolution film was employed in both cameras (3) and (4). It had a resolution of
300 lines mm−1 and was digitized at a resolution of 125 pixels mm−1. A single-frame
cross-correlation technique was employed to evaluate the velocity field. The size of
the interrogation window was 90 pixels× 90 pixels. Successive interrogation windows
overlapped by 50%. The effective grid size was 4 mm. Moreover, each interrogation
window contained approximately 40 particle images. The procedure and parameters
for recording images in the side view of laser sheet A by camera (5) were the
same as those for the end view, except as follows. The effective field of view was
118 mm× 177 mm. The value of magnification was 1 : 4.9, leading to an effective grid
size of 1.8 mm.

A technique of digital particle image velocimetry (DPIV) was used to supplement
the film-based PIV, which was the primary method of this investigation. For the DPIV
approach, laser illumination was provided from a 90 mJ dual-pulsed Yag laser system.
The laser sheet was transmitted through a cylindrical lens, then directly through
the sidewall of the wave tank to form laser sheet B. Images were recorded using a
digital camera having a resolution of 1000 pixels× 1016 pixels. Instantaneous modes
of velocity were evaluated using a frame-to-frame correlation technique. The field of
view was 133 mm× 135 mm in the plane of the laser sheet. During the interrogation
process, an effective window size of 32 pixels×32 pixels was employed, with an overlap
of 50%. The effective grid size was therefore 2.1 mm.

DPIV was also employed to characterize the modes of locally two-dimensional
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vortex shedding beneath the free surface, relative to the shadowgraph visualization
of the free surface distortion. Laser sheet C, indicated by the shaded region in
figure 1(a) and shown in further detail in figure 1(b), was employed for this purpose.
It was located a distance of 51 mm beneath the undisturbed free surface. At the
lowest value of KC = 4.5, the field of view was 59 mm × 60 mm in the plane of the
laser sheet. At values of KC = 10 and 18, the view was 110 mm × 111 mm. For all
interrogation processes, an effective window size of 32 pixels×32 pixels was employed,
also with 50% overlap, and the effective grid size in the plane of the laser sheet was
0.95 mm for KC = 4.5 and 1.75 mm for KC = 10 and 18.

2.5. Measurements of cylinder loading

The moments due to the in-line (x) and transverse (y) forces acting on the cylinder
were determined using a high-sensitivity strain gauge system. The centre of the strain
gauge system was 16.5D (210 mm) above the quiescent free surface. The outputs
from the strain gauge amplifiers were transmitted to the laboratory microcomputer
where they were recorded in synchronization with the wave motion. Values of the
moment coefficients C∗x and C∗y due to the in-line and transverse forces are defined
using the magnitude U of the horizontal velocity fluctuation at the mid-depth lo-
cation of the wave tank. That is, measured values of moment were normalized by
(1/2)ρU2DL2, where D and L represent the diameter and submerged length of the
cylinder respectively.

3. Locally two-dimensional modes of vortex formation
3.1. Images via shadowgraph visualization at the free surface

Figure 3 shows a time sequence of shadowgraph images obtained at KC = 10 and
18. At these values, the strength of the shed vortices was large enough to produce
well-defined images. At the lower limit of KC = 4.5 considered in this investigation,
such well-defined modes were not attainable, and therefore are not represented in
figure 3.

As indicated in the schematic at the upper right of the first shadowgraph image, the
coordinate system looking down on the free-surface is (x, y); it is centred at the axis
of the cylinder. The schematic at the lower right of each shadowgraph image indicates
the instantaneous position (white dot) on the orbital trajectory of the incident wave;
this orbit is in the (x, z)-plane.

Consider the shadowgraph images at KC = 10. The first image shows a black
concentration A, which represents a vortex shed from the previous half-cycle of
oscillation. In subsequent images, it forms a counter-rotating vortex pair with B,
which is shed from the cylinder during the present half wave cycle. This mode is a
well-known feature of vortex formation from cylinders in unidirectional oscillatory
flow, as summarized by Sarpkaya & Isaacson (1981) and described, for example,
by Williamson (1985), and Obasaju et al. (1988). In addition, this basic mode has
been verified via quantitative PIV images for the equivalent scenario of an oscillating
cylinder in quiescent fluid by Lin & Rockwell (1999). An analogous, but somewhat
more complex mode of vortex formation is shown at KC = 18. It is also addressed
in the foregoing references.

3.2. Quantitative images beneath free surface

Instantaneous patterns of velocity were acquired in a plane corresponding to the
horizontal laser sheet C indicated in figure 1(a). It was located a distance of 4D =
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Figure 3. Shadowgraph visualization of vortex formation from the vertical stationary cylinder for
KC = 10 and 18. Coordinates x, y define the horizontal plane and z, x the vertical plane.

51 mm beneath the quiescent free surface. These images are illustrated for three
different values of KC in figure 4. All images were acquired at the same instant, i.e.
phase, of the wave motion. It corresponded to a position midway between the trough
and crest of the wave at the location of the cylinder.

At the low value of KC = 4.5, shown in image (i), the incipient state of vortex
formation occurs symmetrically, whereas in image (ii), the initially formed vortex pair
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Figure 4. Patterns of instantaneous velocity acquired in a horizontal plane corresponding to laser
sheet C designated in figure 1. For purposes of reference in subsequent figures, the location of
vertical laser sheet B is designated by the thick grey line. All images were acquired at the same
phase of the wave motion, corresponding to the position of the wave midway between its trough
and crest at the location of the cylinder. At each value of KC , two admissible modes of vortex
formation are shown, and at KC = 10 and 18, the modes are mirror images of one another; mode II
at these values of KC can be compared with the top row of shadowgraph visualizations in figure 3.

shows a degree of asymmetry; an additional vortex, formed earlier, is also evident.
Irrespective of the particulars of the vortex patterns in images (i) and (ii), all of
the small-scale vortices remain attached, or in close proximity, to the cylinder. The
dimensionless circulation of a given vortex is Γ ∗ = Γ/UDKC . It is normalized by the
local horizontal velocity amplitude U, local Keulegan–Carpenter number KC , and
the cylinder diameter D. The value of Γ was determined from corresponding patterns
of vorticity. For the aforementioned vortices, |Γ ∗| = 0.12 to 0.16, which is relatively
small compared to the values of larger KC , as discussed below.

At the intermediate value of KC = 10, two distinct modes, designated I and II
are evident. They are shown in images (iii) and (iv). Both modes indicate large-scale
vortex formation in the near wake region, and modes I and II are mirror images of
each other. Similarly, mirror-image modes I and II are given in images (v) and (vi) for
KC = 18. The values of dimensionless circulation are in the range |Γ ∗| = 0.18 to 0.39
for the shed vortices at the right of each image. At both KC = 10 and 18, the mirror-
image modes of vortex formation show opposite directions of transverse velocity v in
the plane of the laser sheet. This correspondence between the directions of velocity
v and the occurrence of mode I or II is employed to interpret the modes of three-
dimensional flow structure along the span of the cylinder, as addressed subsequently.

Bearman, Graham & Obasaju (1984) reported the occurrence of mirror-image
modes on the basis of qualitative visualization. For the case of unidirectional flow
past a stationary cylinder, they found that a given mode could transform to its mirror
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image at a given spanwise location. Switching between modes was addressed in detail
by Obasaju et al. (1988), who employed a pointwise measurement technique on a
given cross-sectional plane along the span of a stationary cylinder in a unidirectional
oscillatory flow. Mode switching therefore appears to be an inherent feature of this
class of flows. The issue therefore arises as to whether switches between modes on a
given plane of observation are associated with transformations between instantaneous
modes of three-dimensionality along the span of the cylinder. The present investigation
addresses this aspect.

4. Small-scale spanwise modes
4.1. Qualitative visualization

Figure 5 shows qualitative visualization obtained using the end view defined by laser
sheet B in figures 1(a) and 1(b). Rather than artificially seeding filtered water in the
wave tank, microbial growth was allowed to develop over a period of several days.
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The spanwise patterns were then visible when the growth was illuminated by the
scanning laser beam. The entire image of figure 5 was acquired at the same instant.
It was partitioned into five sub-images, in order to allow individual image processing,
which accounted for variations of illumination intensity with depth. At the instant of
acquisition of the image of figure 5, the centreline of the cylinder is midway between
the crest and trough of the wave.

Figure 5 shows small-scale white dots distributed in a staggered fashion along
the axis of the cylinder at a relatively low value of KC = 4.5. These small-scale
concentrations are similar to those observed by Honji (1981) at KC ≈ 1 to 3.
This type of instability was subsequently addressed by Sarpkaya (1986), Tatsuno &
Bearman (1990), Dütsch et al. (1998b), Dütsch (2000) and Elston et al. (2000), as
described in § 1. In all of these investigations, the instability was characterized for
unidirectional oscillation of a cylinder in quiescent fluid, and the spanwise wavelength
λ/D was found to be a function of both KC and β.

In the plot of figure 5 the wavelength λ/D is defined as the spanwise spacing
between white dots along the same side of the cylinder; the corresponding image was
acquired at 200 cycles after the onset of wave motion. As indicated, the value of λ/D
is approximately unity near the lower end of the cylinder where the flow is essentially
unidirectional. As the free surface is approached, λ/D increases to a value as high as
4.5, while the axis ratio of the orbital trajectory of the incident wave, i.e. B/A (defined
in figure 2) increases as well. Data points corresponding to the experimental values
of λ/D versus B/A are also plotted in figure 5, and good correlation is obtained with
the variation of λ/D versus z. In addition, the plot of figure 5 shows data points
that represent values of λ/D vs. z determined from quantitative PIV images. This
technique is described in the next section.

The increase of λ/D near the free surface is expected to be influenced by the
boundary condition imposed by the surface. In this regard, its effect may be analogous
to that of an end plate in a shear flow, which can stabilize spanwise cells of the
flow structure (Stansby 1976). Of course, the free surface forms a boundary that is
distinctly different from an end plate; in the ideal limit, the free surface is stress free.
Nevertheless, its presence is expected to modify the structure of the spanwise cells.

4.2. Quantitative images

Quantitative imaging in the form of high-image-density particle image velocimetry
using the digital system described in § 2 provided fields of instantaneous velocity
vectors V , contours of constant horizontal (crossflow) velocity v and modes of
instantaneous streamwise vorticity ωx, as shown in figures 6 and 7. Figure 6(a)–6(c)
were acquired over the field of view indicated in the schematic adjacent to each set of
images. In essence, it extended from the free surface to a distance of 10.1D beneath
the quiescent surface. For the images shown in figures 7(a) and 7(b), the field of view
extended over a distance of 10.1D to 20.8D beneath the quiescent free surface. For
each field of view, two instants during the wave cycle are considered. The first instant
is when the centreline of the cylinder is coincident with the trough of the wave, which
corresponds to the deepest point on the particle trajectory of the wave. At the second
instant, the centreline of the cylinder is midway between the wave trough and crest,
which represents the vertical midpoint of the particle trajectory. The instant of image
acquisition is designated by the dot on the schematic of the wave particle trajectory,
which is shown in each image layout.

In figure 6(a), the field of instantaneous velocity vectors V is biased in the downward
direction, due to the fact that the axis of the cylinder is located midway between a wave
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Figure 6. For caption see facing page.
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trough and crest. The contours of constant horizontal (crossflow) velocity v exhibit a
staggered arrangement. The sinuous form of V and the multiple zero crossings of v
along the centreline of the cylinder define the basic sinuous mode S, which occurs in
somewhat different forms in subsequent sets of images. The corresponding contours
of streamwise vorticity ωx generally show, at a given depth beneath the free surface,
pairs of vorticity concentrations of like sign.

The mode S shown in figure 6(a) was, however, not repetitive from cycle to cycle.
An alternative mode, represented by the image of figure 6(b), could occur at the same
phase of the wave motion. As shown in the images of instantaneous velocity vector
V and constant horizontal velocity v, the horizontal components of velocity are all
oriented in the same direction, i.e. to the left. That is, the horizontal movement of the
near wake is unidirectional. As a result, the contours of v no longer exhibit a staggered
arrangement as in figure 6(a); rather they take the form of an in-line arrangement
of like sign along the entire span of the cylinder. These arrangements define the
unidirectional mode U. The corresponding pattern of vorticity concentration ωx
generally shows alternating positive and negative concentrations along the span of
the cylinder.

Figure 6(c) corresponds to the instant at which the trough of the wave is coincident
with the centreline of the cylinder. The instantaneous velocity vectors V show an
alternating pattern with increasing depth beneath the free surface. Contours of
constant horizontal velocity v show a corresponding staggered pattern, which is
analogous to that shown in figure 6(a). This pattern thereby satisfies the criterion of
the sinuous mode S of figure 6(a). The wavelength λ of the pattern of v in figure 6(c)
is relatively large near the free surface and decreases with depth, again in accord
with the variation of figure 6(a). At a depth sufficiently far beneath the free surface,
the staggered arrangement of v contours corresponds to an aligned arrangement of
streamwise vorticity ωx, which is centred on the image of the cylinder. Values of
dimensionless wavelength λ/D as a function of depth z obtained from figure 6(c) are
indicated by the solid black symbols in the plot of figure 5.

Images at a larger depth beneath the free surface are shown in figures 7(a) and
7(b). They exhibit a more ordered, repetitive form, relative to those near the free
surface. At the phase of the wave motion shown in figure 7(a), which corresponds to
the cylinder position midway between a trough and a crest, the overall form of the
instantaneous velocity field V shows a sinuous form, and the contours of horizontal
velocity v show a staggered arrangement, thereby representing the sinuous mode S.
The corresponding arrangement of vorticity concentration ωx tends to show a pair
of like sign at each depth.

Figure 7(b) represents the case where the trough of the wave is coincident with
the centreline of the cylinder. The form of V indicates local jet-like flows directed

Figure 6. Representations of the sinuous mode S and unidirectional mode U over a field of view
immediately beneath the free surface, where KC = 4.5. KC decreases with depth and at the bottom
edge of the images KC = 4.0. The left-hand images show the field of instantaneous velocity vectors
V , the middle images show contours of constant positive (thick line) and negative (thin line)
horizontal velocity v, and the right-hand images show corresponding modes of the instantaneous
streamwise vorticity ωx. In (a, b) at the instant of image acquisition the centreline of the cylinder
is located midway between the trough and crest of the wave; in (c) it coincides with the trough.
(a) Sinuous mode S: the minimum of v, vmin = 2 mm s−1 and incremental ∆v values are 1 mm s−1;
for the vorticity plots the minimum (ωx)min = 0.6 s−1 and incremental ∆ωx values are 0.2 s−1. (b)
Unidirectional mode U: vmin = 4 mm s−1, ∆v = 1 mm s−1, (ωx)min = 0.4 s−1, ∆ωx = 0.2 s−1. (c) Sinuous
mode S: vmin = 3 mm s−1, ∆v = 0.5 mm s−1 (ωx)min = 0.4 s−1, ∆ωx = 0.2 s−1.
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Figure 7. As figure 6 but showing sinuous mode S for a lower field of view: each image is over a
distance of 10.0D to 20.8D beneath the elevation of the quiescent free surface. KC = 4.0 and 3.6
at the top and bottom edges of each image respectively. In (a) at the instant of image acquisition
the centreline of the cylinder is located midway between the trough and crest of the wave; in (b) it
coincides with the trough. (a) vmin = 4 mm s−1, ∆v = 1 mm s−1, (ωx)min = 0.4 s−1, ∆ωx = 0.2 s−1. (b)
vmin = 2 mm s−1, ∆v = 0.5 mm s−1, (ωx)min = 0.4 s−1, ∆ωx = 0.2 s−1.

away from the centreline of the cylinder, and contours of constant horizontal velocity
v show the staggered form of the sinuous mode S. Again, the values of wavelength
between these contours are indicated by the black dots on the plot of figure 5. The
corresponding modes of vorticity ωx are remarkably well aligned with the centreline
of the cylinder.

Taken together, the images of figures 6 and 7 suggest that near the free surface,
where the wave particle orbits have a significant value of ellipticity B/A, the modes
of horizontal velocity v and streamwise vorticity ωx are less repetitive and organized,
relative to those further beneath the free surface where B/A becomes smaller. This
enhanced organization with increasing depth beneath the free surface may also be
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aided by the decrease of KC , which is, however, considerably milder than the decrease
of B/A.

Values of dimensionless circulation Γ ∗ = Γ/UDKC were determined for repre-
sentative, isolated concentrations of streamwise vorticity ωx in figures 6 and 7. In
the region immediately beneath the free surface, represented by figure 6, the vorticity
concentrations have a relatively large scale, and |Γ ∗| = 0.13 to 0.16. Further beneath
the free surface, the concentrations are smaller and their arrangement is highly or-
dered, at least at the proper phase of the wave cycle. The values of dimensionless
circulation are |Γ ∗| = 0.06 to 0.09. As discussed in conjunction with figure 4, the
locally two-dimensional, small-scale vortices have values of circulation, based on pat-
terns of ωz , of |Γ ∗| = 0.12 to 0.16. It is therefore evident that the strength of the
three-dimensional mode based on patterns of ωx is of the same order as that of the
locally two-dimensional mode based on ωz .

5. Moderate- and large-scale spanwise modes
The previous section focused on low Keulegan–Carpenter number, for which lo-

cally two-dimensional, small-scale vortices remain in the immediate proximity of the
cylinder. The spanwise modes have values of dimensionless wavelength in the range
1 6 λ/D 6 4.5. At higher values of KC , e.g. 10 and 18, locally two-dimensional,
large-scale vortices are shed, and they move well away from the cylinder, as indicated
by the shadowgraph visualization of figure 3, and the velocity images of figure 4.
Spanwise modes can have values of λ/D that are one to two orders of magnitude
larger than those at low KC , as addressed in the following.

5.1. Qualitative visualization

Figure 8 shows images of the three-dimensionality for a larger value of KC = 10.
They were obtained using the same type of illumination of microbial growth as for
figure 5. Each image was acquired at a specified number of cycles N after onset of
the wavemaker. All images were, however, acquired at the same instant, or phase,
of the wave motion. The centreline of the cylinder was midway between the trough
and crest of the wave, corresponding to the mid-depth of the vertical portion of the
trajectory of the particle wave motion. (See schematic in the inset of figure 6a).

The image corresponding to N = 2 indicates barely discernible spanwise distortion;
at this low value of N, corresponding to a short time after onset of the wavemaker,
the wave has not yet attained its steady-state form. At a substantially longer time
after the start-up, corresponding to N = 8, the spanwise pattern takes on a sinuous
form, which is designated as mode S. This mode S degenerates to a simplified form at
N = 170; it exhibits a single zero crossing, as opposed to the multiple zero crossings
of mode S at N = 8. Finally, a limiting form of the spanwise structure corresponds to
a unidirectional mode U, which is attained at N = 250. This qualitative visualization
provides a basis for quantitative characterization of the near wake structure, which is
described in the next section.

5.2. Quantitative images

5.2.1. Basic spanwise modes

The spanwise modes of three-dimensional flow structure, which are qualitatively
identified in figure 8, are characterized quantitatively in figures 9–11. For all images,
the laser sheet orientation B, defined in figures 1(a) and 1(b), is employed in con-
junction with the mirror–camera systems (3) and (4), illustrated in figure 1(a). These
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Figure 8. Images of spanwise modes which represent the variation of the locally two-dimensional
mode of vortex formation along the cylinder; KC = 10 at the free surface. N represents the number
of cycles of wave motion that have elapsed prior to acquisition of each image. Images are produced
by illumination of microbial suspensions in water, using the same approach as for figure 5.

instantaneous features of the flow structure are compared with the instantaneous
values of the moment coefficients C∗x and C∗y due to in-line and transverse forces
respectively.

The image at the left of figure 9(a) shows a quasi-sinusoidal form of the velocity
vector field V along the span of the cylinder. The corresponding contours of constant
horizontal velocity v show multiple zero crossings along the centreline of the cylinder
image, which corresponds to a long-wavelength version of the sinuous mode S
described in § 5.1. In essence, the positive and negative regions of v correspond
respectively to mode I and mode II of the locally two-dimensional vortex formation
shown in figure 4 for KC = 10.

Mode S is defined to occur when there is one or more zero crossings of the
distribution of horizontal velocity component along the span of the cylinder; this
definition is consistent with that employed for low KC in § 4.2. The distance between
zero crossings, and thereby the effective wavelength, is substantially larger than the
cases addressed at lower KC in § 4. It is relatively large near the free surface and
decreases as the bottom of the wave tank is approached. Near the free surface, the
distance between zero crossings is approximately 10D, but near the lower end of the
cylinder, where the oscillatory flow is essentially unidirectional, the distance can be as
small as 5D. The local wavelength λ may be taken as twice the local distance between
zero crossings, so near the free surface, λ/D ≈ 20 and at the lower end of the cylinder,
λ/D ≈ 10. The spanwise wavelength (λ/D) of this quasi-sinusoidal mode S decreases
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with increasing depth z beneath the free surface, and therefore with decreasing ratio
of the minor to major axes of the particle orbit of the wave, i.e. B/A, as shown in
figure 5. The magnitude of the moment coefficient C∗y due to the transverse force is
barely discernable, as evident from the time trace at the bottom of figure 9(a).

The sinuous mode S indicated in the left-hand set of images can degenerate to the
form shown in the middle set of images of figure 9(a). In this case, the contours of
horizontal velocity v indicate that v is oriented to the right along the upper and lower
portions of the cylinder, which corresponds to the occurrence of mode I of the locally
two-dimensional vortex shedding (compare figure 4, KC = 10). On the other hand,
near the centre of the cylinder, v is to the left, which corresponds to mode II. Again,
this particular form of mode S corresponds to a very small value of C∗y , as indicated
in the corresponding moment trace.

Finally, the case of a single zero crossing of the horizontal velocity is shown in the
right-hand set of images of figure 9(a). This pattern indicates that modes I and II of
the locally two-dimensional vortex formation (compare figure 4) occur respectively
along the lower and upper regions of the cylinder. This form of mode S is associated
with detectable magnitudes of C∗y , as evident in the moment trace. This is due to
larger contributions to the moment acting on the cylinder for larger depths, where
there is unidirectional shedding over a significant fraction of the span.

Obasaju et al. (1988) reported, on the basis of qualitative observation, a two-cell
structure along the span of the cylinder, whereby each cell occupied about half of the
span. This two-cell mode appears to be the same as the mode shown in the right set
of images of figure 9(a).

As shown in figure 9(b), similar modes can occur at a higher value of KC = 18. For
all sets of images, positive and negative contours of horizontal velocity v correspond
respectively to modes I and II of locally two-dimensional vortex formation (compare
figure 4, KC = 18). Generally speaking, at this larger value of wave amplitude, the
modes are not as sharply defined as those of figure 9(a) corresponding to KC = 10.
This observation is particularly true for the region near the free surface where the
vertical component of velocity associated with the orbital trajectory of the wave is
relatively large. Furthermore, as shown in the left set of images, the quasi-sinusoidal
variation of transverse velocity along the span of the cylinder, which is characteristic
of mode S, is not as regular as at the lower value of KC = 10 exhibited in figure 9(a).
Degenerate forms of mode S are shown in the middle and right-hand set of images.
The mode S with a single zero crossing, which is shown in the right-hand set of
images of figure 9(b), produces detectable peaks of the C∗y trace, relative to the very
low magnitudes associated with forms of mode S that have a larger number of zero
crossings. This observation is the same as for KC = 10 in figure 9(a).

An interesting issue is the possibility of a unidirectional spanwise mode U, which
corresponds to the same sign of the transverse velocity v along the entire span of
the cylinder. As indicated in figure 10, it is indeed possible to attain such a mode
for both KC = 10 and 18. The region near the free surface at the higher value of
KC = 18 exhibits a more complex form due to the relatively large amplitude of
the wave motion. These unidirectional U modes can be sustained for a relatively
large number of wave cycles, as addressed below. They are therefore quite robust
and their existence is not precluded by variations of the ellipticity ratio B/A of the
wave particle trajectory and KC along the span of the cylinder. The traces of the
moment coefficient C∗y due to the transverse force for these unidirectional modes U
exhibit, of course, relatively large magnitudes in comparison with the magnitudes for
the sinuous S modes.
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Figure 9. For caption see facing page.

5.2.2. Spanwise modes in terms of streamwise vorticity

Further insight into the spanwise modes S and U described in the foregoing is
provided by the vorticity contours shown in figure 11. Representative distributions
of instantaneous velocity V , taken from figures 9 and 10, are directly compared
with contours of constant positive (thick white line) and negative (thin white line)
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Figure 9. (a, b) Images of sinuous modes S that represent the variation of the locally
two-dimensional mode of vortex formation (compare figure 4) along the span of the cylinder.
Instantaneous modes of velocity vectors V are compared with contours of constant horizontal
velocity v; (a) KC = 10 at the free surface; vmin = 10 mm s−1, ∆v = 5 mm s−1; (b) KC = 18 at the
free surface; vmin = 20 mm s−1, ∆v = 10 mm s−1.
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Figure 10. Representations of the unidirectional mode U. Modes of instantaneous velocity vectors V
and contours of constant horizontal velocity v correspond to a consistent locally two-dimensional
mode of vortex formation (compare figure 4) along the span of the cylinder for KC = 10,
vmin = 10 mm s−1, ∆v = 5 mm s−1 (left-hand set of images) and KC = 18, vmin = 20 mm s−1,
∆v = 10 mm s−1 (right-hand set of images).

streamwise vorticity ωx. Consider, first, mode S at KC = 10. The overall form of
the arrangement of vorticity concentrations along the span of the cylinder closely
follows the form of the instantaneous velocity vector field V . These concentrations of
streamwise vorticity ωx must be located in the vorticity layer originally shed from the
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Figure 11. Modes of instantaneous velocity vectors V and contours of constant streamwise vorticity
ωx for representative spanwise modes shown in figures 9 and 10. KC = 10: (ωx)min = 0.5 s−1,
∆ωx = 0.5 s−1; KC = 18: (ωx)min = 1 s−1, ∆ωx = 1 s−1.

surface of the cylinder. The large-scale, spanwise distortion of the ωx arrangement is
therefore compatible with the change of the mode of locally two-dimensional vortex
shedding (compare figure 4) along the span of the cylinder.

Regarding the individual vorticity concentrations in the mode S at KC = 10,
the spacing between them is in the range 1.5D to 4D, in contrast to the long
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wavelengths 10 6 λ/D 6 20 of the large-scale spanwise distortion. In the region near
the free surface, corresponding to roughly the uppermost one-fourth of the cylinder,
the arrangement of the vorticity concentrations becomes more complex, due to the
substantial vertical component of velocity in that region.

The arrangement of vorticity concentrations of mode U at KC = 10, which is shown
in the middle set of images of figure 11, does not show large-scale distortion. That is,
the sinusoidal, large-scale undulations of the mode S are not present. This observation
is in accord with the quasi-unidirectional distribution of the instantaneous velocity.
Over the lower portion of the cylinder, where a representative spanwise spacing
between vorticity concentrations can be defined, it has values in the range 1D to 4D.
Along the upper portion of the cylinder, where the axis ratio of the particle trajectory
of the wave is relatively large, the pattern of vorticity concentrations becomes more
complex.

Finally, the case of mode S at KC = 18 is shown in the right-hand set of images of
figure 11. It shows a large-scale sinusoidal distortion of the vorticity pattern, which
again is in accord with the overall form of the instantaneous velocity field V . The
spacing between the small-scale vorticity concentrations is approximately 1D to 4D
along the entire span.

Taken together, the three sets of images of figure 11 suggest that variation of
the mode of locally two-dimensional vortex shedding (compare figure 4) along the
span of the cylinder is indicated by large-scale spanwise modes of both instantaneous
velocity and vorticity, and they provide complementary descriptions. These large-
scale distortions are not associated with corresponding large-scale concentrations
of streamwise vorticity. Only small-scale concentrations of vorticity are detectable.
They lack spatial periodicity, but it is possible to discern approximate values of
spacing between them of 1D to 4.5D. Evaluation of the dimensionless circulation Γ ∗,
based on the concentrations of streamwise vorticity ωx, gives values in the range
0.10 6 |Γ ∗| 6 0.17. These values compare with 0.06 6 |Γ ∗| 6 0.16 observed at low
KC .

5.2.3. Transverse loading in relation to spanwise modes

In figures 9–11, direct comparisons were made with the instantaneous values of
moment coefficients C∗y and C∗x due to transverse and in-line forces at a given
instant of time. The magnitude of C∗y is generally a strong function of the degree of
uniformity of the instantaneous spanwise mode. An attempt was made to estimate
the instantaneous amplitude of the moment coefficient due to the transverse force
based on the degree of unidirectionality of the instantaneous contours of constant
horizontal velocity along the span of the cylinder. This estimate was performed for
the case KC = 10, where the spanwise modes are sharply defined. The procedure is
as follows. The schematic of figure 12 shows contours of constant negative (thin line)
and positive (thick line) horizontal velocity. The distance between zero crossings of
positive and negative contours is designated as `1, `2 . . . `n, and distances from the
centroid of each respective set of contours to the centre of the strain gauge system
as L1, L2 . . . Ln. For the present approximation, the peak amplitude of the measured
moment due to the transverse force was used to obtain a transverse force coefficient C ′y
by assuming that it acts at the mid-depth of the submerged cylinder. The peak value
of the moment occurred immediately prior to acquisition of an image corresponding
to mode U. Values of the moment coefficient C∗y due to the transverse force were
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Figure 12. Plot of the moment coefficient (C∗y )cal due to the transverse force versus measured value
(C∗y )meas. KC = 10. (C∗y )cal was calculated using a simple weighting formula based on the mode that
represents the variation of the locally two-dimensional mode of vortex formation along the cylinder
at a given instant. Straight line represents (C∗y )cal = (C∗y )meas.

calculated according to

(C∗y )cal =
(`1L1 + `2L2 + · · ·+ `nLn)(C

′
y)

(`1 + `2 + · · ·+ `n)L
.

It should be noted that the signs in front of each of the products `iLi, where
i = 1, 2, . . . , are determined by the local direction of the horizontal component of
velocity, which represents the occurrence of either mode I or mode II (see figure 4).
Values of (C∗y )cal versus (C∗y )meas are shown in figure 12, where (C∗y )meas is the measured
peak value of the moment coefficient due to the transverse force immediately prior
to acquisition of the PIV image. Each data point (C∗y )meas in figure 12 corresponds to
a different PIV image and, generally speaking, to a somewhat different arrangement
of contours of constant horizontal velocity. Remarkably, this crude estimate provides
a reasonable indication of the magnitude of the instantaneous moment coefficient
due to the transverse force based strictly on imaging of the spanwise structure. Of
course, it does not account for possible distortions of the basic mode of quasi-two-
dimensional vortex shedding along the span of the cylinder, or the individual values
of circulation of each vortex within these modes.

5.2.4. In-line loading in relation to spanwise modes

The time traces of the moment coefficient C∗x due to the in-line force shown
in figures 9–11 appear to be relatively unaffected by the spanwise mode of three-
dimensionality. Phase-referenced time traces of C∗x are superposed in figure 13. They
were triggered with respect to the wave motion. The small hollow circular symbols
indicate the instant at which the image was acquired for each moment trace. At
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Figure 13. Variations of the moment coefficient C∗x due to the in-line force with time for different
spanwise modes. Symbols S and U correspond respectively to mode S (very low value of moment
coefficient C∗y due to the transverse force) shown in figure 9(a, b) and mode U (large value of
moment coefficient C∗y due to the transverse force) shown in figure 10.

KC = 10 (upper plot) and 18 (lower plot), a total of 10 and 15 traces respectively are
superposed. Deviations are most evident at and near the negative and positive peaks.
These deviations were compared with the corresponding images. As indicated in the
zoomed-in views of figure 13, the extreme values of C∗x at these peaks are associated
with the sinuous mode S that has multiple zero crossings and the quasi-unidirectional
mode U defined in figures 8–11.

6. Overview of averaged unsteady loading on the cylinder
In the preceding sections, emphasis is on quantitative representations of the three-

dimensional flow modes in the near wake of the cylinder. Short segments of in-
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Figure 14. Time traces of the moment coefficient C∗y due to the transverse force for various values
of KC . The time axis on each trace is represented by N, which corresponds to the number of cycles
after the onset of wave motion.

stantaneous moment traces were illustrated, in order to allow correlation of the
instantaneous values of moment coefficients C∗x and C∗y due to in-line and transverse
forces with the images. In view of the fact that a number of basic modes of three-
dimensionality can occur, and spontaneous transitions between modes were observed,
it is expected that long-time records of the moment coefficient C∗y due to the transverse
force will exhibit substantial amplitude modulation.

Figure 14 shows traces of C∗y as a function of N, in which N is the number of cycles
from onset of the wavemaker. A maximum of 400 cycles, i.e. N = 400, is shown at
each value of KC = 2πA0/D = 2π(A/2)/D. At most values of KC , severe amplitude
modulation is evident. The period of this modulation is typically of the order of 30 to
50 cycles, though significantly shorter and longer modulation periods are discernible
in certain of the traces. At KC = 9.8 to 13.4, it is possible to attain a trace that
exhibits relatively minor amplitude modulation, but only after a minimum number of
cycles N = 50 to 200 has elapsed. It should be noted that the highly persistent trace
at KC = 9.8 is related to the case at KC = 10 for unidirectional oscillatory flow past
a stationary cylinder. Obasaju et al. (1988) found highly correlated spanwise pressure
fluctuations along the span of the cylinder at KC = 10. Moreover, Williamson
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Figure 15. Plots of probability density P of the moment coefficient C∗y due to the transverse force

for various values of KC . P (C∗y ) = (n/N)/∆C∗y ,
∫ ∞

0
P (C∗y ) dC∗y = 1, where n is the number of peaks

in ∆C∗y and N is the total number of all peaks.

(1985) and Obasaju et al. (1988) observed the peak magnitude of the transverse force
coefficient Cy to occur at or in the vicinity of KC = 10.

The highly modulated traces of the moment coefficient C∗y due to the transverse
force in figure 14 suggest that a proper statistical representation of the loading would
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Figure 16. Spectra of the moment coefficient C∗y due to the transverse force as a function of
frequency, normalized by the frequency fw of the wave for the indicated values of KC . All spectra
were calculated using a sliding window with ∆N = 50.

be a type of probability density P . The schematic at the top of figure 15 shows the
technique employed to evaluate the probability P (C∗y ). Either a positive or negative
peak occurs in a window of width ∆C∗y displaced a distance corresponding to C∗y
from a zero position. The number of peaks within a given window is represented
by n. The total number of peaks is N and the probability density is therefore
P (C∗y ) = [n/N]/∆C∗y . The plots of probability density P exhibited in figure 15 show
well-defined peaks at relatively large values of KC = 9.8 and 13.4. These peaks occur
in the range 1.3 6 |C∗y | 6 1.4. For values of KC successively lower than KC = 9.8,
the peak of P shifts to lower C∗y at KC = 9.4, becomes relatively flat at KC = 8.9
and exhibits a peak at very low C∗y for KC = 7.4. A generally similar trend is evident
for values of KC > 13.4. For KC = 15.9, 18.2 and 21.4, the peak is attenuated and
moves to successively lower values of C∗y .

Corresponding spectra for each of the time traces of figure 14 are exhibited in
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Figure 17. Comparison of root-mean-square value of the moment coefficient C∗y due to the
transverse force as a function of KC for various lengths ∆N of the sliding window.

figure 16. Calculation of these spectra was based upon a portion of the total record
length extending over 50 oscillation cycles. The portion of the moment trace selected
for evaluation was based upon a sliding window concept. A window of width ∆N = 50
cycles was translated along the time axis until a maximum root-mean-square value of
C∗y was obtained. This portion of the trace was then employed for the calculation of
the spectra. For KC = 7.4 to 15.9, there is little change in the predominant frequency,
or in its harmonics and subharmonics. For all spectra, the predominant spectral
component is at f/fw = 2, in which fw is the frequency of the wave. It is evident
that these spectra do not adequately reflect the severe amplitude modulation effects,
which are represented by the probability density distributions of figure 15.

The effect of a sliding window of several lengths ∆N = 50, 200 and 400 on the
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Figure 18. Comparison of root-mean-square values of the moment coefficient C∗y due to the
transverse force and moment coefficient C∗x due to the in-line force with previous results of the
transverse force coefficient Cy and in-line force coefficient Cx as a function of KC . A direct
comparison can be made between the variations of the dimensionless moment coefficients (C∗y )rms,
(C∗x)rms and the force coefficients (Cy)rms, (Cx)rms. If, as an approximation, the resultant force is
taken to act at the mid-depth of the submerged cylinder, then the right-hand scale of each plot
corresponds to the force coefficients (Cy)rms and (Cx)rms associated with the moment coefficients
(C∗y )rms and (C∗x)rms.

root-mean-square values of C∗y , i.e. (C∗y )rms, is shown in figure 17. At each value of
∆N only that portion of the time trace yielding the maximum value of (C∗y )rms was
plotted as a data point in each of the plots of figure 17. The effect of decreasing the
length ∆N of a sliding window is to smooth the distributions of (C∗y )rms versus KC .
For all cases, however, the peak value occurs at or in the vicinity of KC = 10. The
magnitude of this peak value is largest for ∆N = 50 but does not depart significantly
from the peak values for ∆N = 200 and 400.

Plots of the root-mean-square values of transverse and in-line force coefficients,
as well as the moment coefficients due to transverse and in-line forces, are given
in figure 18. The symbols (Cy)rms and (Cx)rms represent the r.m.s. values of the
transverse and in-line coefficients respectively for unidirectional oscillations of flow
past a stationary cylinder (Williamson 1985; Obasaju et al. 1988; Sarpkaya 1976), as
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well as for a wave past a stationary cylinder (Stansby et al. 1983). For the present
data, (C∗y )rms and (C∗x)rms are the root-mean-square values of the moment coefficients
due to the transverse and in-line forces, which are defined in § 2. Unlike the case
of unidirectional oscillatory flow, the magnitude of the effective unsteady velocity U
varies with depth. It is taken as the horizontal projection of the orbital velocity. For
the data of the present study, a sliding window of ∆N = 50 was applied to the time
trace of C∗y at each value of KC . This distribution is compared with the data of
Williamson (1985) and Obasaju et al. (1988) for unidirectional oscillatory flow past
the cylinder, as well as with Stansby et al. (1983) for a wave of wavenumber kd = 0.77
past the cylinder. All distributions of (Cy)rms and (C∗y )rms have a generally similar form
with a peak near KC = 10.

Justensen (1989) and Bearman et al. (1985) provide data for the variation of
the transverse force coefficient (Cy)rms with KC , but at values of Reynolds number
Re = KCβ much larger than those of the present investigation. Nevertheless, peak
values occur in the vicinity of KC = 10.

Corresponding values of the moment coefficient (C∗x)rms due to the in-line force are
compared in figure 18 with the force coefficients (Cx)rms of Williamson (1985), Bearman
et al. (1985), and Sarpkaya (1976) (transformed by Stansby 1983) for unidirectional
oscillatory flow past a stationary cylinder, as well as with the data of Stansby et al.
(1983), who correlated data for (Cx)rms versus KC for various values of an orbital
parameter Ω of a wave interaction with a vertical cylinder. The data presented here
correspond to their smallest value of orbital parameter Ω = 0.3. For the present data,
the hollow and filled symbols represent respectively the values of KC evaluated at
the free surface and mid-depth. The agreement of the overall form of the (C∗x)rms
distributions with previous investigations of the force coefficients (Cx)rms suggests
that the time-averaged effects of the spanwise modes of three-dimensional vortex
formation from the cylinder do not appear to significantly influence the magnitude
of (C∗x)rms.

For both plots of figure 18, a direct comparison can be made between the variations
of the dimensionless moment coefficients (C∗y )rms, (C∗x)rms, and the force coefficients
(Cy)rms, (Cx)rms. If, as an approximation, the resultant force is taken to act at the mid-
depth of the submerged cylinder, then the right-hand scale of each plot corresponds
to the force coefficients (Cy)rms and (Cx)rms associated with the moment coefficients
(C∗y )rms and (C∗x)rms.

7. Concluding remarks
The spanwise modes of three-dimensional flow structure have been characterized

for the case of a vertical, stationary cylinder in a free surface wave. The incident wave
is a generic one; it exhibits an elliptical particle trajectory at the free surface and
a unidirectional, oscillatory trajectory at the bottom of the wave tank. The modes
are interpreted in terms of patterns of instantaneous velocity and vorticity, and for
selected cases, they are referenced to the instantaneous moment coefficients C∗y and
C∗x due to transverse and in-line forces respectively.

Instantaneous velocity fields, more specifically contours of constant horizontal
(crossflow) velocity along the cylinder, provide a basis for defining the basic spanwise
modes. The possible modes are defined in terms of zero crossings of these velocity
contours, which, in turn, lead to definition of a spanwise wavelength λ. This inter-
pretation is complemented by, and is consistent with, modes defined using contours
of constant streamwise vorticity. The spanwise modes are broadly classified on the
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basis of Keulegan–Carpenter number KC , which, in turn, is an indication of the wave
amplitude. At relatively low KC = 4.5, relatively small-scale spanwise modes can
arise. The wavelength of the spanwise mode is the same as the wavelength between
concentrations of streamwise vorticity.

For the range of moderate KC , which includes KC = 10 and 18 as representa-
tive cases, large-scale spanwise modes can occur. Their wavelengths can be one to
two orders of magnitude larger than the wavelength between relatively small-scale
streamwise vorticity concentrations that are embedded in a given large-scale mode.

Irrespective of the value of KC , however, the spanwise modes can be generally
classified as sinuous S and unidirectional U. For the sinuous mode, the overall form
of the instantaneous velocity field as well as the alternating arrangement of contours
of constant transverse (horizontal) velocity exhibit a sinusoidal-like variation along
the span of the cylinder. On the other hand, for the unidirectional mode, the field
of velocity vectors is biased in a preferential direction along the entire span of the
cylinder, and the contours of constant transverse (horizontal) velocity component
correspond to a unidirectional component along the entire span. Furthermore, the
large-scale features of the arrangements of streamwise vorticity contours can also be
employed to arrive at the same general classification of sinuous and unidirectional
modes.

In the following, the distinctive features of the three-dimensional modes along the
span of the cylinder at low and moderate values of KC are summarized, then the
loading on the cylinder is assessed.

7.1. Small-scale modes along the span of the cylinder at low KC

The well-known three-dimensional instability at low KC , originally addressed by
Honji (1981), has been characterized in detail for the case of an oscillating cylinder
in quiescent fluid, as summarized in § 1.

For the present case of a wave past a stationary cylinder, this instability is also
evident at a relatively low value of KC = 4.5. The spanwise wavelength of the
instability λ relative to the cylinder diameter D, λ/D, scales with the ratio of the
minor B to major A axes of the orbital motion of the wave, i.e. B/A. Near the free
surface, the value of λ/D can be as high as 4.5, and near the bottom (solid) surface
of the wave tank where the oscillatory flow is unidirectional, λ/D ≈ 1. In the present
investigation, these spanwise modes are interpreted in terms of fields of instantaneous
velocity vectors, contours of constant horizontal velocity and contours of constant
streamwise vorticity ωx. The specific form of each of these modes is found to be
a function of the instantaneous location of the wave trough and crest relative to
the position of the cylinder. Furthermore, for locations immediately beneath the free
surface, more than one admissible mode of three-dimensionality can occur. That is,
both sinuous and unidirectional modes are possible.

On the other hand, at locations sufficiently far beneath the free surface, the modes
are consistently of the sinuous type. Apparently, in this region, the combination of a
lower value of KC , as well as a low value of B/A, promotes consistency of a given
mode.

Irrespective of whether one considers the region immediately beneath, or further
below, the free surface, it is important to distinguish between representations of a
given three-dimensional, spanwise mode based on modes of velocity versus vorticity.
Although the effective wavelength of the three-dimensional spanwise mode, i.e. λ/D,
is essentially the same for contours of constant horizontal velocity and contours of
constant streamwise vorticity, the details are distinctly different.
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7.2. Moderate and large-scale modes along the span of the cylinder
at moderate values of KC

A well-known feature of this moderate range of KC = 10 to 18 is the generation
of locally, two-dimensional, staggered patterns of large-scale (ωz) vortices in the near
wake of the cylinder. The consequence of this pronounced vortex formation is to
sweep fluid in the transverse direction across the face of the cylinder. In contrast, at
the low values of KC addressed in the previous section, smaller-scale vortices, which
tend to form in a symmetrical pattern, remain in the immediate proximity of the
cylinder. This distinct difference in the nature of the locally two-dimensional vortex
formation influences the relationship between the wavelength of the spanwise modes
and the wavelength between individual concentrations of streamwise vorticity ωx. In
fact, the spanwise modes described at low KC in the previous section are the same,
while the modes summarized in this section can be an order of magnitude larger.

The first type of mode has a ‘sinuous’ form and is designated as mode S. That is, the
field of instantaneous velocity exhibits a sinusoidal-like variation with depth, which
corresponds to a number of zero crossings of the horizontal component of velocity
along the span of the cylinder. Additional types of sinusoidal S modes correspond to
a smaller number of zero crossings of the horizontal velocity component along the
span of the cylinder, and thereby larger values of spanwise wavelength up to two
orders of magnitude larger than the cylinder diameter. All of the admissible spanwise
modes have been correlated with time traces of the moment coefficient C∗y (t) due to
the transverse force. Those modes that have two or more zero crossings yield very
low peak values of C∗y (t).

The limiting spanwise mode corresponds to unidirectional deflection of the entire
near wake region along the span of the cylinder at a given instant, i.e. the unidirectional
mode U. Remarkably, this unidirectional mode can occur for values of KC as high
as 18, despite the large-amplitude orbital motion of the wave near the free surface
and the substantial gradient of the orbital parameter B/A with increasing depth from
the free surface. These unidirectional modes yield, of course, the maximum values of
the peak moment coefficient C∗y due to the transverse force.

A further interpretation of these spanwise modes involves contours of constant
streamwise vorticity ωx. For the sinuous S mode, the overall arrangement of the
small-scale vorticity concentrations shows large-scale, sinuous distortions that are
highly correlated to the S modes based on velocity. Embedded within this large-scale
distortion are small-scale concentrations of streamwise vorticity with a spanwise spac-
ing much smaller than the wavelength of the large-scale mode. For the unidirectional
U mode, the overall arrangement of the streamwise vorticity concentrations does not
exhibit large-scale spanwise undulations, and it is again well-correlated to the U mode
based on velocity. The small-scale concentrations of streamwise vorticity of the U
mode still have, however, a relatively small spanwise spacing. Furthermore, irrespec-
tive of whether the S or U mode occurs, the concentrations of streamwise vorticity
are arranged in an orderly, contiguous pattern over the lower region of the cylinder,
where the wave motion is essentially unidirectional and has a lower amplitude than
near the free surface. On the other hand, near the free surface, more complex clusters
of small-scale vorticity concentrations exist.

7.3. Loading of the cylinder

The admissible modes along the span of the cylinder at moderate values of KC ,
as summarized in § 7.2, have been correlated with the instantaneous traces of the
moment coefficient C∗y due to the transverse force. When two or more zero crossings
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of the transverse velocity component occur in the near wake, the peak values of C∗y
are barely detectable and, as the limit of unidirectional motion of the near wake
is approached, the peak values of C∗y attain their maximum values. In contrast, the
admissible spanwise modes of three-dimensionality have a relatively minor effect on
the overall form and peak values of the moment coefficient C∗x due to the in-line
force. A phase-referenced comparison of the instantaneous traces of C∗x for various
spanwise modes shows that local distortions at and near the peaks of C∗x can occur,
and the particular type of local distortion is a function of the mode of the spanwise
three-dimensionality.

As summarized in the § 7.2, the spanwise modes exhibit a number of forms, each
having a different number of zero crossings and thereby a different magnitude of the
peak value of the moment coefficient C∗y due to the transverse force. These instanta-
neous values of C∗y , when considered over a relatively long time span, generally exhibit
substantial amplitude modulation. This modulation arises from the spontaneous tran-
sition from one type of mode to another. The degree of amplitude modulation for
a long-time record of C∗y (t) has been characterized as a function of KC . A type of
probability density function is shown to be effective in representing the major features
of the strongly modulated moment traces. On the other hand, if a sliding window con-
cept is employed to sample the portion of the amplitude-modulated trace of C∗y (t) that
has the largest root-mean-square value, it is possible to show that the classical, one-
dimensional spectra of C∗y can exhibit remarkably similar forms over a range of KC .

The root-mean-square values of the moment coefficient due to the transverse force
are compared with those of transverse force coefficient from previous investigations of
both unidirectional oscillatory flow and a free surface wave past a stationary cylinder,
as summarized in §§ 1 and 6. A universal observation is that the maximum values of
those coefficients occur at or near KC = 10, irrespective of the type of unsteady flow
past the cylinder. The present investigation shows that this maximum r.m.s. moment
is associated with minimal amplitude modulation of the corresponding moment trace
and persistence of the unidirectional spanwise mode U over a large number of wave
cycles. The implication is that the particular mode of locally two-dimensional vortex
formation at or near KC = 10 is compatible with the robust spanwise mode of the
unidirectional type, i.e. mode U.

The overall form of the curves representing the root-mean-square values of the
moment coefficient C∗x due to the in-line force, in particular the manner in which they
vary with KC , agree well with data for the in-line force coefficient from previous
investigations involving unidirectional motion. This observation indicates that the
time-averaged values of C∗x , are relatively insensitive to the form of the instanta-
neous spanwise mode, in agreement with the aforementioned features of the timewise
variation of C∗x .
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